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Abstraer Magnetic p m p e n i s  of the orbitally nondegenerate periodic Anderson 
model are investigated using Kotliar and Ruckenstein's slave-boson reformulation of 
the Gutmiller variational method. The Gutnviller approximation is reproduced at the 
saddle-paint level for T = 0. This approach allow us to extend the analysis of Rice 
and Ueda to calculate lhe magnetization as a funclion of applied magnetic field. We 
find that a magnetic inslability exists in the Kondo regime. Our findings suggest that the 
Gutmiller approximation is too biased towards the magnelic state. 

1. Introduction 

Much progress has been made in understanding many of the low-temperature 
properties of heayfermion systems. Among the fundamental problems that remain, 
however, is an understanding of the instabilities in many of these systems at very low 
temperatures to various forms of magnetic order. 

It is generally accepted that many of the properties of heavy-fermion systems can 
be understood on the basis of the periodic Anderson model (PAM). In this paper we 
investigate magnetic properties of the orbitally non-degenerate PAM using Kotliar and 
Ruckenstein's slave-boson reformulation of the Gutmiller variational method (Kotliar 
and Ruckenstein 1986). For T = 0 the Gutnviller approximation is reproduced at 
the saddle-point level. This approach allows us to extend the analysis of Rice and 
Ueda (1985, 1986) to calculate magnetization as a function of applied magnetic field. 

In the Gutmiller approach, correlations are treated by renormalizing all hopping 
processes by a factor q(n,, , na), where nf,, is the number off  electrons with spin U. 

lb make the calculation tractable one has to introduce the Gutmiller approximation, 
which amounts to the neglect of intersite correlations. This additional approximation 
in using the Gutnviller wavefunction has been shown to be exact in the limit of 
large dimensionality (Metzner and Vollhardt 1989, Gebhard 1991). Then for the 
strong-correlation limit (where the on-site Coulomb replusion between f electrons 
U -, 03) , q is given by the ratio of occupation number factors for the correlated and 
uncorrelated wavefunctions. In the correlated wavefunction an f electron can hop 
onto another site only if it has no f electrons, while in the uncorrelated wavefunction 
the only requirement is that it does not have an f electron with the same quantum 
numbers, so that q, = (1 - nf)/(l - nf,,). 

Within the Gutmiller approach a simple physical picture emerges for the existence 
of magnetic instabilites in the strong-correlation limit. In the PAM, hopping processes 
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involve two factors of the hybridization V,  and so 1’ is renormalized by a factor a, 
V, + &Vk. It is the spin dependence of the effective hybridization which leads to 
a magnetic instability for a suficiently small hybridization strength. 

This paper is organized as follows. In section 2 we apply Kotliar and Ruckenstein’s 
slave-boson reformulation of the Gutmiller variational method to the orbitally non- 
degenerate PAM. In  section 3 we present the results of numerically solving the saddle- 
point equations. Conclusions are presented in section 4. 
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2. Formulation 

In this section we apply Kotliar and Ruckenstein’s slave-boson reformulation of the 
Gutmiller variational method to the orbitally non-degenerate PAM. Our analysis is 
carried out for the uniform magnetic states. 

The orbitally non-degenerate periodic Anderson model is 

H = C ~ k C L o C k a  + CVkfLoCko + V k * C L , f k U  
ka ko 

where cka (&) and f k o  (&) are the conduction and f-electron annihilation 
(creation) operators, respectively. The position of the bare f level is given by 
E,, = E, + ah, where we have included an applied external magnetic field h, 
which couples only to the spin of the f electrons. For simplicity we take the 
hybridizationmatrix element Vk for conduction and f electrons to be !+independent. 
The conduction-band dispersion is given by tk. To obtain a metal even in the presence 
of the hybridization gap we assume a non-integral number of electrons. This is 
achieved formally by introducing a second non-hybridized conduction band which 
acts merely as an electron resewoir. 

To treat the effeca of strong correlations we adopt Kotliar and Ruckenstein’s 
slave-boson formulation ol  the Gutmiller variational approach. They considered the 
one-band Hubbard model. ?b extend the  method to the periodic Anderson model 
we need to project out the doubly occupied I orbitals, keeping fixed the number n, 
of f  electrons. To do this, we go over to a grand canonical ensemble and introduce 
an f-electron self-energy p a ,  leading to the effective Hamiltonian for fixed nf: 

Following Kotliar and Ruckenstein we enlarge the Fock space, to contain, in addition 
to the original fermions, a set of four bosons representing the creation (annihilation) 
of singly occupied f orbitals pl, ( p i a ) ,  doubly occupied f orbitals d i ,  ( d i u )  and 
vacant f orbitals ef (ei). The f-electron operators are replaced by 

f i o  - fio%J (3) 

with 
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and we eliminate non-physical states by imposing the constraints, 

(5 )  ~ p f , p i o  + .!ei + didi = 1 f,,fi, t = pl,p;, + dfd, 
U 

representing, respectively, the completeness (each f orbital is empty or singly or doubly 
occupied) and equality in the way f electrons are counted. The effective Hamiltonian 
becomes bilinear in creation and annihilation operators, and is given by 

We obtain physical quantities from the partition function that we write as a 
functional integral over coherent states of Fermi and Bose fields with the constraints 
(equation (3)) enforced by Lagrange multipliers XI') and Ai:): 

We formally integrate out the fermions and evaluate the resulting partition function 
in the saddle-point approximation, in which all Bose fields and Lagrange multipliers 
are taken to be independent of space and (imaginary) time. 

Unfortunately, the resulting saddle-point equations lead to an incorrect result in 
the non-interacting limit (which occurs for U = Oor in the case of fully spin-polarized 
f electrons). This is because in the saddle-point approximation the constraints are 
not satisfied explicitly at each lattice site but only on average. 

To resolve this difficultly we note that the choice of ziu is not unique and one 
can replace zi, by any combination Ui,,zi,V,o such that U,, = 1 when efe; = 1 

are formally equivalent when the constraints are handled exactly. However, at the 
saddle-point level when the constraints are.satisfied only on average, the results are 
dependent on the choice for zio. We take advantage of this ambiguity to ensure that 
the non-interacting limit is correctly given in the saddle-point approximation. We 
choose, as did Kotliar and Ruckenstein, 

or p i - c p i - ,  t = 1 and V,, = 1 whcn p ~ , p , ,  = 1 or.djdi -= 1. All the choices 

This choice also reproduces the Gutnviller approximation within the saddle-point 
approximation (Gebhard 1991). 
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The saddle-point free energy F = -kB,Tln 2 can then be written as 

where p: = ( p t p )  etc. The energy of the hybridized bands is 

E:,, = 1 ( e h  + Efr + pg) f J(€k - Efo - pv)' A 4 q u V 2 ]  (11) I 
where 

4 ,  = c+,, (12) 

and the + (-) label refers to the upper (lower) hybridized band. Minimizing the 
free energy (equation (10)) with respcct to A(1)3A?,pc,p, and d gives integral 
equations €or n f a ,  pu and U 

We determine d from 

and the chemical potential p from the total electron density, 

Here pu is the conductionelectron density of states and W is the conduction-electron 
bandwidth. 
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F I ~ U K  I. Magnetization as .a function of 
the on-site Coulomb repulsion between f 
eleclrons U for the lotal electron density 
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In this section we present the results of numerically solving the saddle-point equations. 
We calculate the magnetization as a function of applied magnetic field for a variety of 
values of the on-site Coulomb repulsion between f electrons U, the bare hybridization 
V and the total electron density ne. 

We took the conductionelectron bandwidth to be 2W = 20ey  the conduction- 
electron density of states was taken to be a constant, pu = 1/2W, and the bare f 
level was taken to be E, = -1.5eV below the middle of the conduction band. 

In figure 1 we have plotted magnetization m = net - ne, as a function of 
the on-site Coulomb repulsion between f electrons U for ne = 1.9 and n, = 1.8. 
For U = 0 we obtain the correct non-interacting limit with q, = 1 and with the 
double occupancy given by its Hartree-Fock value dZ = (nrr)(nrL), as it should be. 
With increasing U we find a crossover from paramagnetism to weak ferromagnetism 
corresponding to a full lower hybridized up-spin band. Here ne, = 1, so the moment 
i s m = n  n,, = 1 -(ne- 1) = 2-  n,. With a further increase in U there can be 
no further mcrease in the magnetization until electrons in the down-spin band can be 
transferred to the upper hybridized up-spin band. This occurs at much larger values 
of U when the Fermi level lies in the upper hybridized up-spin band. Then we find 
a crossover to strong ferromagnctism. 

In figure 2, where we have plotted the hybridized bands tkc as a function of the 
conduction band c ~ ,  the figure shows how the transition occurs from paramagnetism 
to ferromagnetism. We see in figure 2(n) (corresponding to U = 0 in figure 1) a 
paramagnet with magnetization 771 = 0, in figure 2(b) ( U  = 1) a weak ferromagnet 
with m = 2 - ne and in figure 2(c) ( U  = 10) a strong ferromagnet. 

We have plotted in figure 3 the phase diagram in the U-ne plane. 
We now consider the strong-corrclation limit ( U  - CO) in which double occupancy 

o f f  orbitals &.forbidden (dz = 0). In figure 4 we show magnetization as a function 
of hybridization strength V for ne = 1.9. We find strong ferromagnetism for a 
sufficiently low hybridization strength. With increasing hybridization strength, spin 
polarization decreases as f electrons are promoted to the Fermi level and delocalize. 
Then at a critical hybridization strength V, there is a first-order transition to weak 
ferromagnetism, with the moment m = 2 - ne. 
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Figure 2. Hybridized band energy as a function of lhe eondiiction band energy. llIe 
transition from paramagnetism IO ferromagnetism. (a) U = 0. paramagnetism; (6) 
U = 1, weak ferromagnetism with magnelizalion m = 2 - ne; (c )  U = 10, strong 
ferromagnetism. Bare hybridization strength V = 1.0. 

- 
0.0 ~~ ~ 

o m  0.20 Figure 3. Phase diagram in the U-ne plane 
2.0.". for Er = -1.5 and V = 1.0. 
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Figure 4. Magnctization as a function of the 
bare, hybridization strength V for the total 
eleclron density ne = 1.9 and U - m. 
As V is increased. a fimtirrder transition 

P O  I .o 2.0 3.0 +\ occuis from strong to weak ferromagnetism 
YC J at V = V, (see text). 

Figure 5. Magnetization as a function of 
applied magnetic field for several values of 

om 0 10 0 20 0 30 010 the bare hybridizalion strength I' for n. = 2, 
U - CQ and Er = -1.5. 

i 01 
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In figure 5 we have plotted magnetization against applied magnetic field h for 
several values of the hybridization strength V. For V = 3.5eV, we find weak 
ferromagnetism corresponding to a full lower hybridized upspin band. As the 
strength of the applied magnetic field is increased, there can be no increase in the 
magnetization until the Fermi level lies in the upper hybridized up-spin band. Then 
we find a men-magnetic-like transition. This is in contrast to the situation with the 
usual slave-boson approach (Rasul and Desgranges 1986) where q = 1 - nf and the 
crossover from the weak to strong magnetism is continuous (Evans 1991). 

For T = 0 our results (figures 1-5) suggest that the Gutmiller approximation for 
the strong-correlation limit is too biased towards the magnetic state. This problem 
might he rectified in one of two ways. First, it can be done by an alternative 
choice for the hybridization renormalization factor q,. The choice for q, b not 
unique and one could choose a form such that the spin dependence of the effective 
hybridization is reduced. This freedom to choose an alternative form for q, does not 
occur in the standard Gutmiller approach. There q, is determined from statistical 
weighting factors. Our choice for q, (the one obtained from the standard Gutmiller 
approach) ensured that the correct non-interacting limit was given in the saddle- 
point approximation. The sensitivity to the form of q, is demonstrated in figure 6 
where we have introduced a parameter 0 < a 4 1 and plotted magnetization against 
q, = (1 - nf)/ ( l  - anf,). We find that for q,  = 1 - nf the Kondo state is 
always stable with respect to magnetic ordering whilst for q, = (1 - nt)/( 1 - nr,) 
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Figure 6. Magnetization as a function of 
a: qc = ( I  - nr)/(l - an(*) for bare 
hybridization strength V = 1.0 and U + m. 
Only for qo = 1 - nr (standard slave-boson 
approach) is ihe ground state always Stable 

0 2  

0.0 o.* 0.4 0.a 0.8 I ,a 
0 0  ‘“U against magnetic ordering. 

a magnetic instability persists over the entire Kondo regime. Alternatively, the non- 
magnetic state may be stabilized by going beyond the Gutmiller approximation to 
include contributions Irom Gaussian (quantum) fluctuations to the free energy. 

In making the saddle-point approximation, we have neglected thermal fluctuations 
so that magnetic ordering can only be destroyed by destruction of the f moments. 

4. Conclusions 

In this paper we have investigated magnetic properties of the orbitally non- 
degenerate per iodic Anderson model using Kotliar and Ruckenstein’s slave-boson 
reformulation of the Gutmiller variational method. We worked within the saddle- 
point approximation, which for T = 0 reproduced the Gutmiller approximation. With 
this approach we were able to extend the work of Rice and Ueda to the calculation 
of magnetization as a function of temperature and applied magneck field. 

Our findings suggest that for the strong-correlation limit (U - CO) the Gutmiller 
approximation (qc  = ( I  - nf ) / ( l  -T I ( , , ) )  is too biased towards the magnetic state. 
This is in contrast with the case for the standard slave-boson approach ( q  = 1 - nf), 
where no magnetic instability has been found. 

Finally we would like t o  mention two possible avenues for future work. The slave- 
boson rcformulation of the Gutmiller variational method reproduced the Gutmiller 
approximation in the saddle-point approximation for T = 0. By including Gaussian 
fluctuations one could in principle go beyond the Gutnviller approximation. A further 
development would be to cxtend our calculations to the case of antiferromagnetism. 
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